Many-body quantum chemistry on graphics processing units
نویسندگان
چکیده
Heterogeneous nodes composed of a multicore CPU and at least one graphics processing unit (GPU) are increasingly common in high-performance scientific computing, and significant programming effort is currently being undertaken to port existing scientific algorithms to these unique architectures. We present implementations for two many-body quantum chemistry methods on heterogeneous nodes: the coupled-cluster with single and double excitations (CCSD) and time-dependent configuration interaction with single and double excitations (TD-CISD) methods. Both methods can be implemented on a computer as a series of dense matrix-matrix multiplications, operations that GPUs are particularly adept at performing. The GPU-accelerated CCSD algorithm is as much as 4.3 times faster than the corresponding CPU algorithm and 9.7 times faster than the algorithm in the Molpro package. The TD-CISD algorithm is accelerated by as much as a factor of 3.9 by GPUs. Enhanced performance is achieved by overlapping CPU and GPU computations.
منابع مشابه
Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...
متن کاملInteracting electrons in a magnetic field: Mapping quantum mechanics to a classical ersatz-system
Solving the quantum-mechanical many-body problem requires scalable computational approaches, which are rooted in a good understanding of the physics of correlated electronic systems. Interacting electrons in a magnetic field display a huge variety of eigenstates with different internal structures, which have been probed experimentally in the Hall effect. The advent of highperforming graphics pr...
متن کاملEfficient molecular dynamics simulations with many-body potentials on graphics processing units
Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within di...
متن کاملArchitectural Comparisons for a Quantum Monte Carlo Application
Recent technological advances have led to a number of emerging platforms such as multi-cores, reconfigurable computing, and graphics processing units. We present a comparative study of multi-cores, field-programmable gate arrays, and graphics processing units for a Quantum Monte Carlo chemistry application. The speedups of these implementations are measured relative to a multi-core implementati...
متن کاملComputational Gravitational Dynamics with Modern Numerical Accelerators
We review the recent optimizations of gravitational N -body kernels for running them on graphics processing units (GPUs), on single hosts and massive parallel platforms. For each of the two main N -body techniques, direct summation and treecodes, we discuss the optimization strategy, which is different for each algorithm. Because both the accuracy as well as the performance characteristics diff...
متن کامل